Tracking Microstructure of Crystalline Materials: A Post-Processing Algorithm for Atomistic Simulations

نویسندگان

  • JASON F. PANZARINO
  • TIMOTHY J. RUPERT
چکیده

Atomistic simulations have become a powerful tool in materials research due to the extremely fine spatial and temporal resolution provided by such techniques. To understand the fundamental principles that govern material behavior at the atomic scale and directly connect to experimental works, it is necessary to quantify the microstructure of materials simulated with atomistics. Specifically, quantitative tools for identifying crystallites, their crystallographic orientation, and overall sample texture do not currently exist. Here, we develop a post-processing algorithm capable of characterizing such features, while also documenting their evolution during a simulation. In addition, the data is presented in a way that parallels the visualization methods used in traditional experimental techniques. The utility of this algorithm is illustrated by analyzing several types of simulation cells that are commonly found in the atomistic modeling literature but could also be applied to a variety of other atomistic studies that require precise identification and tracking of microstructure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomistic simulation of creep in a nanocrystal.

We describe a method to simulate on macroscopic time scales the stress relaxation in an atomistic nanocrystal model under an imposed strain. Using a metadynamics algorithm for transition state pathway sampling we follow the full evolution of a classical anelastic relaxation event, with relaxation times governed by the nanoscale microstructure imperfections in the solid. We show that probing thi...

متن کامل

Quadrotor UAV Guidence For Ground Moving Target Tracking

The studies in aerial vehicles modeling and control have been increased rapidly recently. In this paper , a coordination of two types of heterogeneous robots , namely unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) is considered. In this paper the UAV plays the role of a virtual leader for the UGVs. The system consists of a vision- based target detection algorithm that uses the ...

متن کامل

Atomistic simulation of matter under stress: crossover from hard to soft materials

Atomistic simulation can give insights to the mechanical behavior of stressed crystalline hard materials. Theoretical strength, de*ned in the long wavelength limit through elastic stability criteria, or more generally in terms of soft vibrational modes in the deformed lattice, can be studied by direct simulation of stress–strain response. It is suggested that this approach may be applied as wel...

متن کامل

Atomistic modeling of interfaces and their impact on microstructure and properties

Atomic-level modeling of materials provides fundamental insights into phase stability, structure and properties of crystalline defects, and to physical mechanisms of many processes ranging from atomic diffusion to interface migration. This knowledge often serves as a guide for the development of mesoscopic and macroscopic continuum models, with input parameters provided by atomistic models. Thi...

متن کامل

Disclination mediated dynamic recrystallization in metals at low temperature

Recrystallization is one of the most important physical phenomena in condensed matter that has been utilized for materials processing for thousands of years in human history. It is generally believed that recrystallization is thermally activated and a minimum temperature must be achieved for the necessary atomic mechanisms to occur. Here, using atomistic simulations, we report a new mechanism o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014